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Atomic Forge

• Need fast accurate forward 
models for atomic states of 
tracked atoms.

• Need computational control 
of beam position and 
intensity. 

• Will enable 3D atomic 
fabrication: quantum 
computing, spintronics, etc. 0 20 40 60 80 100
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Tracking of multiple well potential in 1D. Tracking of multiple well 
lattice potential in 2D



General Framework for Data Reconstruction (connection 
to FASTMath Optimization and UQ)

Determine f = {f (xi, yj) : 0  i, j  2N} that
solves the convex optimization problem

minimize ||Jxf ||1 + ||Jyf ||1,
subject to ||MF f � f̂ ||2  �,

Where the matrix M is a mask that removes un-
known Fourier coe�cients.

Tomography MRI Ultrasound



SAR Reconstruction Results

Improving synthetic 
aperture radar (SAR) 
data through AHOTV.  
Left TV SAR and right 
AHOTV reconstruction of 
car and Golf Course

1. Brugiapaglia, Adcock, and Archibald, “Recovery guarantees for compressed sensing
with unknown errors”, Sampling Theory and Applications, 2017.

2. Churchill, Archibald, and Gelb, “Edge-adaptive l2 regularization image reconstruction
from non-uniform Fourier data”, Journal of Scientific Computing, 2018.



Ø We reconstruct data ! ∈ ℝ$×& from measurements 
' ∈ ℝ(×& and ) ∈ ℝ(×$ :

' ≈ )!

Sparse reconstruction and representation of data

	

§ Limited number of measurements: + ≪ -. 
§ The data are sparse.  
§ . = 1: reconstructing a single dataset. 

. > 1: simultaneously reconstructing multiple datasets.  

Ø Recovery via regularizations enforcing sparsity: 

! = argmin 3 4 subject to  ' ≈ )4
Standard CS:   3 4 = 4 5.
Structures of the sparsity can be exploited:
§ Downward closed and tree structures:   3 4 = 4 7,5.
§ Joint sparsity: 3 4 = 4 9,5.



Ø Data from UQ and imaging 
applications often possess 
downward closed and tree structure.

Sparse reconstruction and representation of data

Ø Weighted !" minimization with a 
specific choice of weight: 

# $ = $ &," with () = max |.:,)|

Certified reduction in complexity: 
§ Legendre systems:      0 = O s3

instead of O s3.56 as in unweighted !".
§ Chebyshev systems: 0 = O s".56

instead of O s3 as in unweighted !". 
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Figure: A 
comparison of 
weighted !"
minimization 
with different 
choices of 
weights

A. Chkifa, N. Dexter, H. Tran, and C. Webster, Polynomial approximation via 
compressed sensing of high-dimensional functions on lower sets. Math. 
Comp. (2017) https://doi.org/10.1090/mcom/3272



Ø Simultaneous reconstruction of multiple datasets sharing similar sparsity 
patterns using mixed norm: 

! " = " $,& = '
()&

*
"(,: $

Sparse reconstruction and representation of data

§ . $,& promotes the joint sparsity of column vectors.  
§ Provably yielding better recovery properties than individual reconstructions. 
§ Efficiently implemented by proximal splitting approaches.

Figure: A comparison of joint sparse with 
individual reconstructions as well as other 
techniques in approximating high 
dimensional parameterized systems. 

N. Dexter, H. Tran, and C. Webster, On the 
strong convergence of forward-backward 
splitting in reconstructing jointly sparse signals. 
submitted, 2017. https://arxiv.org/abs/1711.02591

https://arxiv.org/abs/1711.02591


Compression Artifact Removal in Scientific Data Using 
Deep Learning (Connection to RAPIDS)

Scientific Achievement
Developed a deep-learning based compression 
artifact removal approach that provides fast 
enhancement (using trained model) compared to 
state-of-the-art compressed sensing (CS) approach

Significance and Impact
Scientific simulations generate large amounts of 
data.  Storing/moving it can be expensive, and lossy 
compression like JPEG results in compression 
artifacts (ringing, blocking, etc.).  CS is expensive 
and fails in some cases. 

Research Details
• Approach allows transfer learning to new simulation 

data from the same application
• Online learning (using transfer learning) enables 

enhancing images from other application domains
• All metrics improved with machine learning: 

Normalized Mean Square Erorr (NMSE) reduced;
Structural Similarity Index (SSIM) and  Peak Signal 
to Noise Ratio (PSNR) increased

NMSE SSIM PSNR

JPEG 0.038 0.971 37.245

CS w/ 400 iterations 0.045 0.973 34.534

EDSR 0.024 0.989 41.071

RDN 0.022 0.989 42.224

Barotropic instability test Enlarged region

JPEG 
Compression

Enhanced deep 
super-resolution 

Network

TV Compressed 
Sensing

Residual Dense 
Network



MGARD-Multigrid Adaptive Reduction of Data 
(Connections with RAPIDS and Un/Structured Grids)

MGARD reconstruction 
of fusion simulation data 
preserving physical 
dynamics or QOIs to a 
pre-described tolerance 
level



Compression and Reconstruction of Streaming Data 
(Connection to FASTMath Eigensolvers & Linear Solvers)

We develop a matrix factorization approach 
for data compression, reconstruction and 
interpretable decomposition: 

! ≈ #$
• Data (signals, images) are stacked into ! ∈

ℝ'×).
• #: dictionary; $: sparse code.

Original and reconstructed data from online dictionary learning
Complete Dictionary


